Sustainably produced lumber, certified by the Forest Stewardship Council, was used in more than 50 percent of the wood-based products and materials.

Local/regional materials make up more than 30 percent of the building materials. Products have been extracted, harvested or recovered and manufactured within 500 miles of the site.

Construction waste management resulted in the recycling of more than 90 percent of the waste generated during construction.

Recycled-content materials were used throughout the building. For example, the siding and carpeting have 60 and 34 percent post-consumer recycled material, respectively. The structural steel is 80 percent post-consumer recycled material.

Reused materials include timbers salvaged from the old Tacoma Municipal Dock. Douglas fir beams were remilled and used for conference room walls, and the walls, ceiling and reception desk in the lobby. Old granite curbs, recovered from street improvement projects, were recycled into benches.

Light shelves in open office areas extend natural light deeper into the building. These shelves, placed above eye level near the windows, are made of reflective materials that reflect daylight onto the ceiling, which conveys light further into the space.

Solar shading is accomplished with fixed sunshades on the south side of the building and motorized shades on the west. The shades prevent sunlight from landing directly on the windows and heating up the interior.

Low VOC (volatile organic compound) adhesives, sealants, paints, coatings, carpet and wood reduce the level of potentially toxic or harmful organic chemical compounds that can enter the atmosphere as gases or vapor.

Lighting in open office areas is equipped with daylight sensors that automatically adjust light levels based on the amount of natural light.

Windows on the south and west sides of the building can be opened to provide natural ventilation and allow the breeze off the Thea Foss Waterway to cool the building. Indicators inside the building tell occupants when to open windows to maximize natural cooling.

Daylighting of the interior is supported by the building’s long, narrow shape, permitting natural light to illuminate many of the office areas.

Indoor Environmental Quality promotes strategies that improve indoor air quality and provide access to views and natural daylight.

Views are available to more than 90 percent of the regularly occupied spaces in the building, giving most occupants views of the building’s surroundings.

Natural ventilation and radiant heating and cooling are used in the building, along with energy-efficient mechanical systems.

Ground source heat pump uses the constant temperature of underlying groundwater to heat and cool the building. This is accomplished by 64 geothermal wells, each approximately 280 feet deep, under the esplanade and parking lot.

Sustainability produces strategies that improve indoor air quality and provide access to views and natural daylight.

Windows on the south and west sides of the building can be opened to provide natural ventilation and allow the breeze off the Thea Foss Waterway to cool the building. Indicators inside the building tell occupants when to open windows to maximize natural cooling.

Daylighting of the interior is supported by the building’s long, narrow shape, permitting natural light to illuminate many of the office areas.

Materials & Resources encourages the selection of sustainably grown, harvested, produced and transported products and materials.

Recycled-content materials were used throughout the building. For example, the siding and carpeting have 60 and 34 percent post-consumer recycled material, respectively. The structural steel is 80 percent post-consumer recycled material.

Reused materials include timbers salvaged from the old Tacoma Municipal Dock. Douglas fir beams were remilled and used for conference room walls, and the walls, ceiling and reception desk in the lobby. Old granite curbs, recovered from street improvement projects, were recycled into benches.

Sustainableproducedlumber, certified by the Forest Stewardship Council, was used in more than 50 percent of the wood-based products and materials.
The Center for Urban Waters is a 51,000-square-foot building housing City of Tacoma Environmental Services labs and offices, University of Washington Tacoma researchers and Puget Sound Partnership staff. This collaboration brings together environmental scientists, analysts, engineers and policymakers to develop and apply the best possible science to restoring and protecting Puget Sound.

This project is the result of years of work by many individuals and organizations, led by the Urban Waters Board of Directors, who dreamed of a premier research center committed to developing solutions to the problems facing urban bay communities.

In launching construction, the Tacoma City Council aimed for a LEED® Platinum rating (v2.2), the highest possible designation under the U.S. Green Building Council’s Leadership in Energy and Environmental Design green building certification system.

Sustainable Site minimizes a building’s impact on ecosystems and waterways; encourages appropriate landscaping and smart transportation choices; controls stormwater runoff; and reduces erosion, light pollution and heat island effect.

Light pollution is reduced by systems that automatically turn off all interior non-emergency lighting during non-business hours and provide light in exterior areas only where needed for safety or comfort.

Native and adapted plants require less water and fertilizers, provide habitat for birds and animals, and protect water quality in Puget Sound.

Cedar and Douglas fir snags along the waterfront provide staging, feeding and nesting habitat for birds and small animals.

Water Efficiency encourages smart use of water, inside and out, through the use of efficient appliances and fixtures and water-wise landscaping. These strategies result in the Center for Urban Waters using 46 percent less water than a conventional facility.

Bike storage racks, lockers and shower facilities accommodate and encourage alternative commuting.

Rain garden collects stormwater runoff from the parking lot. A shallow depression with native plants, the rain garden filters pollutants from stormwater.

Green roofs absorb rainfall and filter pollutants from the air and stormwater. They reduce heating and cooling loads by naturally insulating the building.

Water storage tanks, also known as permeable or porous pavement, allow rain to pass through the parking lot and drain into the soil, rather than pooling on top and running into the stormwater system.

Light pollution is reduced by systems that automatically turn off all interior non-emergency lighting during non-business hours and provide light in exterior areas only where needed for safety or comfort.

Native and adapted plants require less water and fertilizers, provide habitat for birds and animals, and protect water quality in Puget Sound.

Cedar and Douglas fir snags along the waterfront provide staging, feeding and nesting habitat for birds and small animals.

Water Efficiency encourages smart use of water, inside and out, through the use of efficient appliances and fixtures and water-wise landscaping. These strategies result in the Center for Urban Waters using 46 percent less water than a conventional facility.

Bike storage racks, lockers and shower facilities accommodate and encourage alternative commuting.

Rain garden collects stormwater runoff from the parking lot. A shallow depression with native plants, the rain garden filters pollutants from stormwater.

Green roofs absorb rainfall and filter pollutants from the air and stormwater. They reduce heating and cooling load by naturally insulating the building.

Green roof anatomy
1. Hardy, low maintenance plants
2. Green roof soil or growing medium
3. Root barrier layer
4. Water retention/capillary mat
5. Drainage layers/channels
6. Waterproof membrane
7. Moisture-resistant rigid insulation layer

Pervious pavers, also known as permeable or porous pavement, allow rain to pass through the parking lot and drain into the soil, rather than pooling on top and running into the stormwater system.

Water pollution is reduced by systems that automatically turn off all interior non-emergency lighting during non-business hours and provide light in exterior areas only where needed for safety or comfort.

Native and adapted plants require less water and fertilizers, provide habitat for birds and animals, and protect water quality in Puget Sound.

Cedar and Douglas fir snags along the waterfront provide staging, feeding and nesting habitat for birds and small animals.

Water Efficiency encourages smart use of water, inside and out, through the use of efficient appliances and fixtures and water-wise landscaping. These strategies result in the Center for Urban Waters using 46 percent less water than a conventional facility.

Bike storage racks, lockers and shower facilities accommodate and encourage alternative commuting.

Rain garden collects stormwater runoff from the parking lot. A shallow depression with native plants, the rain garden filters pollutants from stormwater.

Green roofs absorb rainfall and filter pollutants from the air and stormwater. They reduce heating and cooling load by naturally insulating the building.

Green roof anatomy
1. Hardy, low maintenance plants
2. Green roof soil or growing medium
3. Root barrier layer
4. Water retention/capillary mat
5. Drainage layers/channels
6. Waterproof membrane
7. Moisture-resistant rigid insulation layer

Pervious pavers, also known as permeable or porous pavement, allow rain to pass through the parking lot and drain into the soil, rather than pooling on top and running into the stormwater system.

Water pollution is reduced by systems that automatically turn off all interior non-emergency lighting during non-business hours and provide light in exterior areas only where needed for safety or comfort.

Native and adapted plants require less water and fertilizers, provide habitat for birds and animals, and protect water quality in Puget Sound.

Cedar and Douglas fir snags along the waterfront provide staging, feeding and nesting habitat for birds and small animals.

Water Efficiency encourages smart use of water, inside and out, through the use of efficient appliances and fixtures and water-wise landscaping. These strategies result in the Center for Urban Waters using 46 percent less water than a conventional facility.

Bike storage racks, lockers and shower facilities accommodate and encourage alternative commuting.

Rain garden collects stormwater runoff from the parking lot. A shallow depression with native plants, the rain garden filters pollutants from stormwater.

Green roofs absorb rainfall and filter pollutants from the air and stormwater. They reduce heating and cooling load by naturally insulating the building.

Green roof anatomy
1. Hardy, low maintenance plants
2. Green roof soil or growing medium
3. Root barrier layer
4. Water retention/capillary mat
5. Drainage layers/channels
6. Waterproof membrane
7. Moisture-resistant rigid insulation layer

Pervious pavers, also known as permeable or porous pavement, allow rain to pass through the parking lot and drain into the soil, rather than pooling on top and running into the stormwater system.

Water pollution is reduced by systems that automatically turn off all interior non-emergency lighting during non-business hours and provide light in exterior areas only where needed for safety or comfort.

Native and adapted plants require less water and fertilizers, provide habitat for birds and animals, and protect water quality in Puget Sound.

Cedar and Douglas fir snags along the waterfront provide staging, feeding and nesting habitat for birds and small animals.

Water Efficiency encourages smart use of water, inside and out, through the use of efficient appliances and fixtures and water-wise landscaping. These strategies result in the Center for Urban Waters using 46 percent less water than a conventional facility.

Bike storage racks, lockers and shower facilities accommodate and encourage alternative commuting.

Rain garden collects stormwater runoff from the parking lot. A shallow depression with native plants, the rain garden filters pollutants from stormwater.

Green roofs absorb rainfall and filter pollutants from the air and stormwater. They reduce heating and cooling load by naturally insulating the building.

Green roof anatomy
1. Hardy, low maintenance plants
2. Green roof soil or growing medium
3. Root barrier layer
4. Water retention/capillary mat
5. Drainage layers/channels
6. Waterproof membrane
7. Moisture-resistant rigid insulation layer

Pervious pavers, also known as permeable or porous pavement, allow rain to pass through the parking lot and drain into the soil, rather than pooling on top and running into the stormwater system.