CITY OF TACOMA
POLICE FLEET WAREHOUSE

BASE BID: REMOVE AND REPLACE 14 EXISTING ROOFTOP UNITS SERVING WAREHOUSE, AND ADMINISTRATIVE SPACES.
REMOVE AND REPLACE EXISTING VEHICLE EXHAUST HOSE REELS AND ASSOCIATED FANS.
REMOVE AND REPLACE EXISTING ROOFTOP FANS SERVING WAREHOUSE.
ADD THREE HVLS FANS TO SERVE WAREHOUSE.

PROJECT LOCATION
1. CONTRACTOR SHALL VISIT THE SITE PRIOR TO BIDDING TO REVIEW AND VERIFY EXISTING CONDITIONS AND CONSTRUCTION MATERIALS, INCLUDING, BUT NOT LIMITED TO, ALL ROOFS, FLOORS, ceilings, and other areas that may be disturbed during construction in order to accomplish the work.
2. BUILDING FEATURES SHOWN ON PLANS ARE APPROXIMATE & ARE BASED ON AS-BUILT DATA PROVIDED BY THE OWNER, A COMPLETE REVIEW IS REQUIRED TO BE MADE BY THE CONTRACTOR. VERIFY SIZES & LOCATIONS PRIOR TO BEGINNING WORK.
3. CONTRACTOR SHALL CAREFULLY COORDINATE WORK W/ ALL OTHER TRADES.
4. ALL ITEMS ARE NEW UNLESS SPECIFICALLY NOTED AS EXISTING.
5. WORK HOURS: NORMAL WORK HOURS ARE MONDAY THRU FRIDAY 7:00 AM TO 4:00PM. CONTRACTORS’ WORK HOURS SHALL BE WITHIN THOSE HOURS EXCEPT WHERE AFTER HOURS WORK IS REQUIRED AS NOTED.
6. THE BUILDING WILL REMAIN OCCUPIED THROUGHOUT CONSTRUCTION. PROVIDE BARRICADES & SIMILAR PROTECTION TO KEEP NON-CONSTRUCTION PERSONNEL CLEAR OF CONSTRUCTION AREAS.

NOTE: THE ABOVE IS A SUMMARY DESCRIPTION ONLY. SEE CONTRACT DOCUMENTS FOR COMPLETE PROJECT REQUIREMENTS.
EQUIPMENT SIZING, PERFORMANCE, AND TYPE

1. LOAD CALCULATIONS, CASE 1: LOAD CALCULATIONS HAVE BEEN PERFORMED IN ACCORDANCE WITH WSEC 20/12. FOR DESCRIPTION OF OTHER ABBREVIATIONS SEE SYMBOL LISTING TO THE LEFT, NOTE: WITH WASHINGTON STATE ENERGY CODE, WET BULB THERMOMETER IS TO BE USED WHEN OUTDOOR AIR TEMPERATURE EXCEEDS 40 DEG F.

2. EQUIPMENT AND SYSTEM SIZING: FAN MOTOR CAPACITY OF MACHINERY AND VARIOUS EQUIPMENT DISTANCES ARE OBTAINED FROM THE RELEVANT MANUFACTURER EQUIPMENT DATA THAT PRODUCED THE ALLOCATION OF MAXIMUM CAPACITY.

REVISIONS:

MECHANICAL LEGEND

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>CUBIC FEET PER MINUTE</td>
</tr>
<tr>
<td>F</td>
<td>DIA, Ø</td>
</tr>
<tr>
<td>B</td>
<td>VOLTS, VOLTAGE</td>
</tr>
</tbody>
</table>

ADDITIONAL EFFICIENCY OPCON FIGURE

1. ADDITIONAL EFFICIENCY OPCON FIGURE: CASE 1: ADDITIONAL EFFICIENCY OPCON FIGURE OF THE MINIMUM CIRCUIT AMPACITY USED FOR TESTING: CASE 2: ADDITIONAL EFFICIENCY OPCON FIGURE OF THE MINIMUM CIRCUIT AMPACITY USED FOR TESTING.

2. MINIMUM CIRCUIT AMPACITY FOR ELECTRICAL MACHINERY AND COP SYSTEM WILL HAVE A MINIMUM CIRCUIT AMPACITY OF 150% OF THE RATED CURRENT.

3. MINIMUM AMPACITY IS TO BE USED FOR TESTING THAT THE ATTACK CURRENT OF THE TOTAL DUCT SYSTEM, TO A MAXIMUM OF 20% OF THE TOTAL DUCT SYSTEM.

DUCTWORK SEALING & TESTING

22. DUCTWORK SEALING & TESTING: FOR DISTRIBUTION SYSTEMS SPACE BALANCING DEVICES, C408.2.2.1: PROVIDE ALL SUPPLY AIR OUTLET AND TERMINAL DEVICES WITH AIR FLOW METERING DEVICES OR DUCT VOLUME DAMPERS. FOR SEPARATE ZONE DUCTWORK, PROVIDE DAMPERS WITH PROVEN DAMPER IQ AVAILABLE FROM THE MANUFACTURER MANUFACTURING.

CONSERVATION

1. CONSERVATION: CASE 1: ALL EQUIPMENT AND SYSTEMS, EQUIPMENT AND CONTROL ARE TO BE DEIGNED SO AS TO ENSURE QUALITY PERFORMANCE OF THE SYSTEMS.

2. COMMISSIONING REQUIREMENTS: CONSTRUCTION DOCUMENTS CASE 1: COMMISSIONING REQUIREMENTS FOR ELECTRICAL MACHINERY AND COP SYSTEM WILL HAVE A MINIMUM EFFICIENCY OF 70% OR GREATER.

THERMOSTATIC CONTROLS

1. THERMOSTATIC CONTROLS, CASE 1: THERMOSTATIC CONTROLS FOR FAN SYSTEMS WITH 65 MBH OR LESS IN COPING CAPACITY WILL HAVE A MINIMUM$header$ chatte$<$header$.

DIRECT FAN SYSTEMS

1. DIRECT FAN SYSTEMS: CASE 1: DIRECT FAN SYSTEMS WILL HAVE A MINIMUM CLG AT THE DESIGN POINT OF OPERATION SHALL BE WITHIN 10% OF THE ACS/02/10.
MECHANICAL DEMOLITION NOTES

1. All work in this drawing is to be performed in accordance with section 1 of the Mechanical General Notes.

MECHANICAL GENERAL NOTES

1. All work in this drawing is to be performed in accordance with section 1 of the Mechanical General Notes.

2. MECHANICAL EQUIPMENT: All mechanical equipment, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be fabricated and installed in accordance with the applicable codes and standards.

3. MECHANICAL DEMOLITION: All existing mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be demolished in accordance with the demolition plans and specifications.

4. MECHANICAL INSTALLATION: All new mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the installation plans and specifications.

5. MECHANICAL BALANCING: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be balanced in accordance with the balancing plans and specifications.

6. MECHANICAL ECONOMY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be designed and installed in accordance with the principles of mechanical economy.

7. MECHANICAL MAINTENANCE: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be maintained in accordance with the maintenance plans and specifications.

8. MECHANICAL SECURITY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the security plans and specifications.

9. MECHANICAL SAFETY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the safety plans and specifications.

10. MECHANICAL ENVIRONMENTAL: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the environmental plans and specifications.

11. MECHANICAL ENERGY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the energy plans and specifications.

12. MECHANICAL CODES: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the applicable codes and standards.

13. MECHANICAL DRAWINGS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical drawings.

14. MECHANICAL SPECIFICATIONS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical specifications.

15. MECHANICAL BID: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical bid.

16. MECHANICAL CONNECTIONS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be connected in accordance with the mechanical connections.

17. MECHANICAL SUPPORTS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be supported in accordance with the mechanical supports.

18. MECHANICAL FASTENERS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be fastened in accordance with the mechanical fasteners.

19. MECHANICAL INSULATION: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be insulated in accordance with the mechanical insulation.

20. MECHANICAL DUCTWORK: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be ducted in accordance with the mechanical ductwork.

21. MECHANICAL PIPING: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be piped in accordance with the mechanical piping.

22. MECHANICAL ELECTRICAL: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be electrically connected in accordance with the mechanical electrical.

23. MECHANICAL MEASUREMENTS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be measured in accordance with the mechanical measurements.

24. MECHANICAL TESTING: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be tested in accordance with the mechanical testing.

25. MECHANICAL COMMISSIONING: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be commissioned in accordance with the mechanical commissioning.

26. MECHANICAL OPERATIONS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be operated in accordance with the mechanical operations.

27. MECHANICAL MAINTENANCE: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be maintained in accordance with the mechanical maintenance.

28. MECHANICAL SAFETY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical safety.

29. MECHANICAL ECONOMY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be designed and installed in accordance with the principles of mechanical economy.

30. MECHANICAL ENVIRONMENTAL: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the environmental plans and specifications.

31. MECHANICAL ENERGY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the energy plans and specifications.

32. MECHANICAL CODES: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the applicable codes and standards.

33. MECHANICAL DRAWINGS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical drawings.

34. MECHANICAL SPECIFICATIONS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical specifications.

35. MECHANICAL BID: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical bid.

36. MECHANICAL CONNECTIONS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be connected in accordance with the mechanical connections.

37. MECHANICAL SUPPORTS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be supported in accordance with the mechanical supports.

38. MECHANICAL FASTENERS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be fastened in accordance with the mechanical fasteners.

39. MECHANICAL INSULATION: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be insulated in accordance with the mechanical insulation.

40. MECHANICAL DUCTWORK: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be ducted in accordance with the mechanical ductwork.

41. MECHANICAL PIPING: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be piped in accordance with the mechanical piping.

42. MECHANICAL ELECTRICAL: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be electrically connected in accordance with the mechanical electrical.

43. MECHANICAL MEASUREMENTS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be measured in accordance with the mechanical measurements.

44. MECHANICAL TESTING: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be tested in accordance with the mechanical testing.

45. MECHANICAL COMMISSIONING: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be commissioned in accordance with the mechanical commissioning.

46. MECHANICAL OPERATIONS: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be operated in accordance with the mechanical operations.

47. MECHANICAL MAINTENANCE: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be maintained in accordance with the mechanical maintenance.

48. MECHANICAL SAFETY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the mechanical safety.

49. MECHANICAL ECONOMY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be designed and installed in accordance with the principles of mechanical economy.

50. MECHANICAL ENVIRONMENTAL: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the environmental plans and specifications.

51. MECHANICAL ENERGY: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the energy plans and specifications.

52. MECHANICAL CODES: All mechanical systems, including but not limited to HVAC systems, plumbing systems, and electrical systems, shall be installed in accordance with the applicable codes and standards.
HEAT PUMP SCHEDULE - PACKAGED TYPE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MODEL</th>
<th>HP CLASS</th>
<th>FINISH</th>
<th>UNIT</th>
<th>ELEC KVA</th>
<th>MAX. CFM</th>
<th>SEER</th>
<th>HSPF</th>
<th>RATED MAX.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/1</td>
<td>208/1</td>
<td>1</td>
<td></td>
<td>C208</td>
<td>3.325</td>
<td>2900</td>
<td>14.4</td>
<td>6.0</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>208/1</td>
<td>208/1</td>
<td>1</td>
<td></td>
<td>C208</td>
<td>3.325</td>
<td>2900</td>
<td>14.4</td>
<td>6.0</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>208/1</td>
<td>208/1</td>
<td>1</td>
<td></td>
<td>C208</td>
<td>3.325</td>
<td>2900</td>
<td>14.4</td>
<td>6.0</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

FAN SCHEDULE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>SPECIFICATIONS OF FAN AND CONTROLLER</th>
<th>TYPE</th>
<th>AIR CAPACITY</th>
<th>CFM</th>
<th>MAX. TEMPERATURE</th>
<th>ELECTRICAL</th>
<th>RPM</th>
<th>MAX. PRESSURE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>INDUSTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>INDUSTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>INDUSTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUZZY SCHEDULE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>SPECIFICATIONS OF FAN AND CONTROLLER</th>
<th>TYPE</th>
<th>AIR CAPACITY</th>
<th>CFM</th>
<th>MAX. TEMPERATURE</th>
<th>ELECTRICAL</th>
<th>RPM</th>
<th>MAX. PRESSURE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>INDUSTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>INDUSTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>INDUSTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BID SET
GENERAL NOTES:
1. SEE MECHANICAL DEMOLITION NOTES SHEET M002.
2. EXISTING ITEMS SHOWN ARE BASED ON OWNER PROVIDED AS-BUILTS. CONTRACTOR TO FIELD VERIFY EXISTING CONDITIONS PRIOR TO BEGINNING WORK.
3. EXISTING DUCTWORK SERVING DEMO'D ROOFTOP UNITS SHALL REMAIN AS NECESSARY TO RECONNECT TO NEW EQUIPMENT.
4. CAP OFF UNUSED BRANCH TAKE-OFF AT MAINS.
5. NOT ALL KEYED NOTES USED THIS SHEET.
6. EXISTING CO CONTROLS SERVING EXHAUST FANS ARE TO BE RE-USED, UNO.

KEYED NOTES:
- REMOVE (E) HOSE REEL AND ASSOCIATED EXHAUST FAN. SUPPORTS MAY REMAIN AND BE RE-USED.
- REMOVE (E) RTU AS PART OF BASE BID.
- REMOVE (E) GAS PIPING UP TO (E) ROOF CURB TO REMAIN & BE RE-USED.
- REMOVE (E) ROOF CURB TO REMAIN & BE RE-USED.
- REMOVE (E) ROOF CURB TO REMAIN & BE RE-USED.
- REMOVE (E) ROOF CURB TO REMAIN & BE RE-USED.
GENERAL NOTES:
1. SEE MECHANICAL DEMOLITION NOTES SHEET M002.
2. EXISTING ITEMS SHOWN ARE BASED ON OWNER PROVIDED AS-BUILTS. CONTRACTOR TO FIELD VERIFY EXISTING CONDITIONS PRIOR TO BEGINNING WORK.
3. EXISTING DUCTWORK SERVING DEMO'D ROOFTOP UNITS SHALL REMAIN AS NECESSARY TO RECONNECT TO NEW EQUIPMENT.
4. CAP OFF UNUSED BRANCH TAKE-OFF AT MAINS.
5. NOT ALL KEYED NOTES USED THIS SHEET.
6. EXISTING CO CONTROLS SERVING EXHAUST FANS ARE TO BE RE-USED, UNO.

KEYED NOTES:
1. REMOVE (E) ROOFTOP PACKAGED UNIT AS PART OF BASE BID.
2. REMOVE (E) HOSE REEL AND ASSOCIATED EXHAUST FAN. SUPPORTS MAY REMAIN AND BE RE-USED.
3. REMOVE (E) ROOF CURB TO REMAIN & BE RE-USED.
4. REMOVE (E) ROOFTOP PACKAGED UNIT AS PART OF ALTERNATE BID NO.1.
5. REMOVE (E) GAS PIPING UP TO (E) RTU. CAP OFF PIPING BELOW ROOF.

GENERAL NOTES:
1. SEE MECHANICAL NOTES, SHEET M001 & M002.
2. LOCATE MOTORIZED DAMPERS, ACTUATORS, & BDD'S TO BE ACCESSIBLE, PROVIDE DUCT ACCESS DOORS AT MOTORIZED DAMPERS, & BDD'S TO ALLOW ACCESS TO DAMPERS.
3. PROVIDE TRANSITIONS AT DUCT CONNECTIONS TO ALL HVAC UNITS, FANS & OTHER EQUIPMENT TO MATCH UNIT CONNECTIONS. TRANSITIONS SHALL BE LINED WHERE CONNECTING DUCTS ARE LINED.
4. REVISE EXISTING SUPPORTS TO SUIT NEW EQUIPMENT CONFIGURATION.
5. RE-BALANCE (E) INLETS & OUTLETS SERVED BY UNITS BEING REPLACED TO CFM VALUES SHOWN ON PLANS.
6. NOT ALL KEYED NOTES MAY BE USED ON ALL SHEETS.

KEYED NOTES:
1. OUTDOOR UNIT LOCATED ON ROOF ABOVE. CONNECT TO EXISTING DUCTWORK WHICH SERVED PREVIOUSLY DEMO'D ROOFTOP UNIT. OFFSET DUCTWORK WITHIN CURB AS NECESSARY TO CONNECT TO NEW UNIT.
2. CONNECT TO EXISTING VEHICLE EXHAUST DUCTWORK. PROVIDE DUCT TRANSITIONS AS NEEDED.
3. ALTERNATE BID NO. 1.
4. PROVIDE CURB ADAPTOR TO CONNECT TO (E) ROOF CURB. SEE ROOF NOTES FOR ADDITIONAL REQUIREMENTS.
5. PROVIDE MOUNTING PLATFORM TO CONNECT TO (E) ROOF CURB OR OTHER UNIT FOR MOUNTING REQUIREMENTS.
NOTES: 1. PREVIOUSLY DEMO’D FAN. MODIFY (E) ROOF CURB TO INSTALL ROOF TOP FAN IN SAME LOCATION AS NEW UNIT. CONNECT TO EXISTING DUCTWORK WHICH SERVED AREAS. PROVIDE SILICONE TOP COAT AT WASHED AREAS. MANUFACTURER TO ALLOW FOR NEW TOP COAT AT WASHED FLASHINGS. 2. REVISE EXISTING SUPPORTS TO SUIT NEW EQUIPMENT CURB, CRICKETS, AND ROOF PANELS. NOTIFY OWNER OF ISSUES. 3. GENERAL NOTES: a. SEE PREVIOUS SHEET FOR MORE DETAIL b. DUCT TRANSITION FROM (E) 1" TO (E) 18"Ø c. DUCT TRANSITION FROM (E) 6x6 CD-3 TO (E) 18"Ø d. DUCT TRANSITION FROM (E) 12x12 CD-3 TO (E) 12/12 e. NOT ALL KEYED NOTES MAY BE USED ON ALL SHEETS. 4. KEYED NOTES: a. DUCT TRANSITION FROM (E) 12x12 CD-3 TO (E) 12/12 b. DUCT TRANSITION FROM (E) 18"Ø TO (E) 10/8 c. DUCT TRANSITION FROM (E) 10x10 RG TO (E) 8/8 5. KEY PLAN

DATE: 05-09-23
CHECKED: NRH

GENERAL NOTES:
1. PREVIOUSLY DEMO’D FAN. MODIFY (E) ROOF CURB TO INSTALL ROOF TOP FAN IN SAME LOCATION AS NEW UNIT. CONNECT TO EXISTING DUCTWORK WHICH SERVED AREAS. PROVIDE SILICONE TOP COAT AT WASHED AREAS. MANUFACTURER TO ALLOW FOR NEW TOP COAT AT WASHED FLASHINGS. 2. REVISE EXISTING SUPPORTS TO SUIT NEW EQUIPMENT CURB, CRICKETS, AND ROOF PANELS. NOTIFY OWNER OF ISSUES. 3. GENERAL NOTES: a. SEE PREVIOUS SHEET FOR MORE DETAIL b. DUCT TRANSITION FROM (E) 1" TO (E) 18"Ø c. DUCT TRANSITION FROM (E) 6x6 CD-3 TO (E) 18"Ø d. DUCT TRANSITION FROM (E) 12x12 CD-3 TO (E) 12/12 e. NOT ALL KEYED NOTES MAY BE USED ON ALL SHEETS. 4. KEYED NOTES: a. DUCT TRANSITION FROM (E) 12x12 CD-3 TO (E) 12/12 b. DUCT TRANSITION FROM (E) 18"Ø TO (E) 10/8 c. DUCT TRANSITION FROM (E) 10x10 RG TO (E) 8/8
ROOF NOTES:
1. SEE SPECIFICATIONS FOR PRODUCT INFORMATION AND SUBMITTAL REQUIREMENTS.
2. POWER WASH ROOFING 5' AROUND ALL REPLACED RTU'S & EF'S, AND ENTIRE ADMIN ROOF AREA. REMOVE EXISTING ROOF ACRYLIC COATING DOWN TO BARE METAL AT CLEANED AREAS.
3. POWER WASH EXTERIOR OF (E) ROOF CURBS.
4. INSPECT EXISTING ROOF CURBS FOR ANY SIGN OF FAILURE IN CURB, CRICKETS, AND ROOF PANELS. NOTIFY OWNER OF ISSUES.
5. REPLACE ALL EXPOSED FASTENERS WITH STAINLESS STEEL SCREWS AND NEOPRENE GASKETS AT ALL (E) ROOF CURBS.
6. PROVIDE BACKER ROD AND SILICONE SEALANT AT CAP FLASHINGS.
7. PROVIDE ROOFING PRIMER AS REQUIRED BY SYSTEM MANUFACTURER TO ALLOW FOR NEW TOP COAT AT WASHED AREAS. PROVIDE SILICONE TOP COAT AT WASHED AREAS.
8. AT NEW ROOFTOP EQUIPMENT, PROVIDE CURB ADAPTER TO TRANSITION FROM (E) CURB TO NEW EQUIPMENT. COORDINATE WITH EQUIPMENT MFR FOR SIZING.

GENERAL NOTES:
1. SEE MECHANICAL NOTES, SHEET M001 & M002.
2. PROVIDE TRANSITIONS AT DUCT CONNECTIONS TO ALL HVAC UNITS, FANS & OTHER EQUIPMENT TO MATCH UNIT CONNECTIONS. TRANSITIONS SHALL BE LINED WHERE CONNECTING DUCTS ARE LINED.
3. REVISE EXISTING SUPPORTS TO SUIT NEW EQUIPMENT CONFIGURATION.
4. RE-BALANCE (E) INLETS & OUTLETS SERVED BY UNITS BEING REPLACED TO CFM VALUES SHOWN ON PLANS.
5. NOT ALL KEYED NOTES MAY BE USED ON ALL SHEETS.

KEYED NOTES:
1. OUTDOOR UNIT LOCATED ON ROOF ABOVE.
2. CONNECT TO EXISTING DUCTWORK WHICH SERVED PREVIOUSLY DEMO'D ROOFTOP UNIT. OFFSET DUCTWORK WITHIN CURB AS NECESSARY TO CONNECT TO NEW UNIT.
3. CONNECT TO EXISTING VEHICLE EXHAUST DUCTWORK. PROVIDE DUCT TRANSITIONS AS NEEDED.
4. ALTERNATE BID NO. 1.
5. INSTALL ROOFTOP FAN IN SAME LOCATION AS PREVIOUSLY DEMO'D FAN. MODIFY (E) ROOF CURB TO SUIT NEW FAN.
6. PROVIDE CURB ADAPTOR TO CONNECT TO (E) ROOF CURB. SEE ROOF NOTES FOR ADDITIONAL REQUIREMENTS.
UNIT 3/4" NEOPRENE GASKET CONTINUOUS AROUND PERIMETER (TYP)

ANCHOR UNIT TO CURB, MIN. 24" O.C.
EXISTING "IF-CURB" GALVANIZED SHEET METAL ROOF CURB TO REMAIN.

PROVIDE NEW GALVANIZED SHEET METAL "IF-CURB" ADAPTER OR EQUAL. REF. EQUIPMENT SCHEDULE FOR UNIT SIZING. PROVIDE ALL COMPONENTS PER MFR INSTALLATION MANUAL.

EXISTING "IF-CURB" CHANNEL TO REMAIN
EXISTING WING WALL AND DIVERTER PLATES TO REMAIN. REMOVE EXISTING ACRYLIC SEALANT DOWN TO BARE METAL. PRESSURE WASH EXISTING ROOFING, CURB AND FLASHINGS. INSPECT ALL CURB AND ROOF MATERIAL FOR EVIDENCE OF FAILURE. CONSULT WITH OWNER AT TIME OF INSPECTION. PROVIDE EPOXY PRIMER & SILICONE SEALANT AT FULL PERIMETER OF CURB AND ADJACENT ROOF.

NOTE: DETAIL SHOWS ONE POSSIBLE CONFIGURATION OF THE CURB, OTHER CONFIGURATIONS ARE ACCEPTABLE, PROVIDED ALL CRITERIA ARE MET.

ROOFTOP CURB DETAIL

ROOFTOP CURB CAP DETAIL
GENERAL NOTES

1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.

2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR REPLACED.

KEYED NOTES:

1. DISCONNECT WIRE AND CONDUIT FROM EXISTING VEHICLE EXHAUST REEL. V.E.R. VOLTAGE TO BE CONVERTED TO 208 VOLT 1-PHASE.

2. DISCONNECT WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT. HVAC EQUIPMENT TO BE REPLACED WITH LIKE.

3. REMOVE WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT BACK TO SOURCE PANEL. HVAC EQUIPMENT TO BE REPLACED.
GENERAL NOTES
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS AND IS SHOWN FOR CONVENIENCE. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.
2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR REPLACED.

KEYED NOTES:
- DISCONNECT WIRE AND CONDUIT FROM EXISTING VEHICLE EXHAUST REEL. V.E.R. VOLTAGE TO BE CONVERTED TO 208 VOLT 1-PHASE.
- DISCONNECT WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT. HVAC EQUIPMENT TO BE REPLACED WITH LIKE.
- REMOVE WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT BACK TO SOURCE PANEL. HVAC EQUIPMENT TO BE REPLACED.
GENERAL NOTES
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.

2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR REPLACED.

KEYED NOTES:
- DISCONNECT WIRE AND CONDUIT FROM EXISTING VEHICLE EXHAUST REEL. V.E.R. VOLTAGE TO BE CONVERTED TO 208 VOLT 1-PHASE.
- DISCONNECT WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT. HVAC EQUIPMENT TO BE REPLACED WITH LIKE.
- REMOVE WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT BACK TO SOURCE PANEL. HVAC EQUIPMENT TO BE REPLACED.
GENERAL NOTES

1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.

2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR REPLACED.

KEYED NOTES:

- DISCONNECT WIRE AND CONDUIT FROM EXISTING VEHICLE EXHAUST REEL. V.E.R. VOLTAGE TO BE CONVERTED TO 208 VOLT 1-PHASE.
- DISCONNECT WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT. HVAC EQUIPMENT TO BE REPLACED WITH LIKE.
- REMOVE WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT BACK TO SOURCE PANEL. HVAC EQUIPMENT TO BE REPLACED.
GENERAL NOTES
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.

2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURED OR REPLACED.

KEYED NOTES:
1. DISCONNECT WIRE AND CONDUIT FROM EXISTING VEHICLE EXHAUST REEL. V.E.R. VOLTAGE TO BE CONVERTED TO 208 VOLT 1-PHASE.

2. DISCONNECT WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT. HVAC EQUIPMENT TO BE REPLACED WITH LIKE.

3. REMOVE WIRE AND CONDUIT FROM EXISTING MECHANICAL HVAC EQUIPMENT BACK TO SOURCE PANEL. HVAC EQUIPMENT TO BE REPLACED.
PARTIAL FIRST FLOOR PLAN - ELECTRICAL

SCALE: 1/8" = 1'-0"

PLAN NORTH

GENERAL NOTES
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.
2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR REPLACED.
3. SEE MECHANICAL DRAWINGS AND MECHANICAL EQUIPMENT CONNECTIONS SCHEDULE ON SHEET E305 FOR HVAC EQUIPMENT DESCRIPTION AND ADDITIONAL INFORMATION.

KEYED NOTES:
- PROVIDE 20/2 CIRCUIT BREAKER IN PANEL P2-2 FOR NEW VEHICLE EXHAUST REELS.
- CIRCUIT NEW VEHICLE EXHAUST REELS AS SHOWN. PROVIDE MOTOR-RATED MAINTENANCE DISCONNECT.
- CIRCUIT NEW FANS AS SHOWN. USE CIRCUIT FROM PREVIOUS VEHICLE EXHAUST REELS.
- PROVIDE NEW DISCONNECT AND EQUIPMENT WIRING FOR MECHANICAL HVAC EQUIPMENT. EXISTING CIRCUIT INDICATED TO BE REUSED. MODIFY AND EXTEND EXISTING CIRCUIT AS REQUIRED.
- PROVIDE 20/3 SHUNT TRIP CIRCUIT BREAKER IN PANEL H2. CONNECT CIRCUIT BREAKER TO FIRE ALARM CONTROL PANEL CONTACT.
- REPLACE BREAKER IN SOURCE PANEL WITH NEW. PROVIDE NEW DISCONNECT AND WIRING FOR NEW RTU UNIT. SEE PANEL SCHEDULES ON SHEETS E601-E604.
MATCH LINE
SEE E301
SEE E302
SEE E304

GENERAL NOTES
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.
2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR REPLACED.
3. SEE MECHANICAL DRAWINGS AND MECHANICAL EQUIPMENT CONNECTIONS SCHEDULE ON SHEET E305 FOR HVAC EQUIPMENT DESCRIPTION AND ADDITIONAL INFORMATION.

KEYED NOTES:
- REPLACE PANEL WITH NEW 400A PANEL. SEE PANEL SCHEDULES ON SHEET E-501-3.
- CIRCUIT NEW VEHICLE EXHAUST REELS AS SHOWN. PROVIDE MOTOR-RATED MAINTENANCE DISCONNECT.
- CIRCUIT NEW FANS AS SHOWN. USE CIRCUIT FROM PREVIOUS VEHICLE EXHAUST REELS.
- PROVIDE NEW DISCONNECT AND EQUIPMENT WIRING FOR MECHANICAL HVAC EQUIPMENT. EXISTING CIRCUIT INDICATED TO BE REUSED. MODIFY AND EXTEND EXISTING CIRCUIT AS REQUIRED.
- NOT USED.
- REPLACE BREAKER IN SOURCE PANEL WITH NEW. PROVIDE NEW DISCONNECT AND WIRING FOR NEW RTU UNIT. SEE PANEL SCHEDULES ON SHEETS E601-E604.
MATCH LINE
SEE E302
SEE E303

RTU 21
RTU 26

SWITCHGEAR ON MEZZANINE ABOVE (NEW POLICE)

RTU 19
RTU 20
RTU 22
RTU 23
RTU 27
RTU 28
RTU 29

PANEL XP2-1
PANEL XP2-2
PANEL XH2
PANEL P6-2
PANEL P6-1
PANEL H3A
PANEL H3B
PANEL P5

H3A-1,3,5
H3A-2,4,6
H3A-7,9,11
H3A-8,10,12
P6-47,49
XP2-19,21
XP2-18,20
XP2-22,24
XH2-1,3,5
H3A-19,21,23

ALTERNATE BID #1

PARTIAL FIRST FLOOR PLAN - ELECTRICAL

SCALE: 1/8" = 1'-0"

GENERAL NOTES
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.
2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURED OR REPLACED.
3. SEE MECHANICAL DRAWINGS AND MECHANICAL EQUIPMENT CONNECTIONS SCHEDULE ON SHEET E305 FOR HVAC EQUIPMENT DESCRIPTION AND ADDITIONAL INFORMATION.
PARTIAL FIRST FLOOR PLAN - ELECTRICAL

KEYED NOTES:
1. PROVIDE NEW DISCONNECT AND EQUIPMENT WIRING FOR
MECHANICAL HVAC EQUIPMENT. EXISTING CIRCUIT INDICATED TO BE
REUSED. MODIFY AND EXTEND EXISTING CIRCUIT AS REQUIRED.
2. REPLACE BREAKER IN SOURCE PANEL WITH NEW. PROVIDE NEW
DISCONNECT AND WIRING FOR NEW RTU UNIT. SEE PANEL
SCHEDULES ON SHEETS E601-E604.

GENERAL NOTES
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS
PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT
INFORMATION BEFORE BEGINNING WORK.
2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE
REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR
REPLACED.
3. SEE MECHANICAL DRAWINGS AND MECHANICAL EQUIPMENT CONNECTIONS
SCHEDULE ON SHEET E305 FOR HVAC EQUIPMENT DESCRIPTION AND
ADDITIONAL INFORMATION.

SCALE: 1/8" = 1'-0"
KEYED NOTES:
1. REPLACE BREAKER IN SOURCE PANEL WITH NEW. PROVIDE NEW DISCONNECT AND WIRING FOR NEW RTU UNIT. SEE PANEL SCHEDULES ON SHEETS E601-E604.

GENERAL NOTES:
1. MECHANICAL EQUIPMENT CIRCUIT INFORMATION AND PANEL LOCATIONS PROVIDED BY AS-BUILT DOCUMENTS. FIELD-VERIFY ALL CIRCUIT INFORMATION BEFORE BEGINNING WORK.
2. UNLESS NOTED OTHERWISE EXISTING WIRE, CONDUIT, AND CIRCUIT TO BE REUSED FOR ALL MECHANICAL EQUIPMENT BEING RECURBED OR REPLACED.
3. SEE MECHANICAL DRAWINGS AND MECHANICAL EQUIPMENT CONNECTION SCHEDULE ON THIS SHEET FOR HVAC EQUIPMENT DESCRIPTION AND ADDITIONAL INFORMATION.
ONE-LINE DIAGRAM NOTES:
REPLACE EXISTING PANEL WITH NEW 400A PANEL. EXISTING CIRCUITS TO BE RE-CIRCUITED TO NEW PANEL. SEE PANEL SCHEDULE FOR DETAILS.

FEEDER SCHEDULE

<table>
<thead>
<tr>
<th>CABLE</th>
<th>DESCRIPTION</th>
<th>AMPERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-4-G</td>
<td>(2) 3"C-4#350MCM+ #1/0 EGC</td>
<td>600-4-G</td>
</tr>
<tr>
<td>200-4-G</td>
<td>2 1/2"C-4#3/0+ #4 EGC</td>
<td>1600-4</td>
</tr>
<tr>
<td>125-4-G</td>
<td>1 1/2"C-4#1/0+ #6 EGC</td>
<td>100-4-G</td>
</tr>
<tr>
<td>125-3</td>
<td>1 1/2"C-3#1/0</td>
<td>70-3</td>
</tr>
<tr>
<td>225-4-G</td>
<td>2 1/2"C-4#4/0+ #2 EGC</td>
<td>70-3</td>
</tr>
<tr>
<td>225-3</td>
<td>1 1/4"C-3#4</td>
<td></td>
</tr>
<tr>
<td>100-4-G</td>
<td>1 1/2"C-4#1+ #6 EGC</td>
<td>125-4-G</td>
</tr>
<tr>
<td>225-4-G</td>
<td>125-4-G</td>
<td></td>
</tr>
<tr>
<td>125-3</td>
<td>125-3</td>
<td></td>
</tr>
</tbody>
</table>

EXISTING ONE-LINE DIAGRAM

SHEET SIZE IS TRUE SCALE WHEN ABOVE LINE MEASURES AS NOTED

E501

CITY OF TACOMA - POLICE FLEET WAREHOUSE
3702 PINE ST
TACOMA, WASHINGTON 98409

general@hultzbhu.com
Phone: (253) 383-3257
Fax: (253) 383-3283

Job Number:
Tacoma, WA 98402

REVISIONS:
DATE: 05.09.23
CHECKED: JM
PROJECT NO. 22-240
DRAWN: AD
Three Phase Panel Schedules

H2-1

<table>
<thead>
<tr>
<th>Location</th>
<th>Phase</th>
<th>Voltage</th>
<th>Load</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H2-2 (R)

<table>
<thead>
<tr>
<th>Location</th>
<th>Phase</th>
<th>Voltage</th>
<th>Load</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H3A

<table>
<thead>
<tr>
<th>Location</th>
<th>Phase</th>
<th>Voltage</th>
<th>Load</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H6 (R)

<table>
<thead>
<tr>
<th>Location</th>
<th>Phase</th>
<th>Voltage</th>
<th>Load</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XHS

<table>
<thead>
<tr>
<th>Location</th>
<th>Phase</th>
<th>Voltage</th>
<th>Load</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XHS (R)

<table>
<thead>
<tr>
<th>Location</th>
<th>Phase</th>
<th>Voltage</th>
<th>Load</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BID SET

City of Tacoma - Police Fleet Warehouse

3702 Pine St

Tacoma, Washington 98409

E601

General@hultzbhu.com

Phone: (253) 383-3257

Fax: (253) 383-3283

Project No. 22-240

Job Number:

REVISIONS:

DATE: 05.09.23

CHECKED: JM

DRAWN: AD

Panel Schedules