TACOMA POWER ELECTRIC VEHICLE CHARGERS
TACOMA, WASHINGTON

PROJECT INFORMATION

PROJECT NAME: TACOMA POWER ELECTRIC VEHICLE CHARGERS

SITES

1. MUNICIPAL PARKING LOT
2. TACOMA PARKING GARAGE
3. PARK PLAZA GARAGE
4. NTH LOT
5. MUSEUM OF GLASS GARAGE
6. CONVENTION CENTER GARAGE
7. TACOMA DOME, LOT A

APPLICABLE CODES

2022 TACOMA MUNICIPAL CODE
2022 NATIONAL ELECTRICAL CODE
2018 WASHINGTON STATE ENERGY CODE (WAC 51-11C)
2021 INTERNATIONAL BUILDING CODE
2021 INTERNATIONAL FIRE CODE
2021 INTERNATIONAL MECHANICAL CODE
2021 INTERNATIONAL EXISTING BUILDING CODE

GENERAL NOTES

1. THE PLANS DO NOT SHOW ALL UNDERGROUND UTILITIES. THE CONTRACTOR SHALL INVESTIGATE UTILITIES PRIOR TO ANY FOUNDATION EXCAVATION AND CONSTRUCTION TO AVOID DAMAGE TO ANY UNDERGROUND UTILITIES. CONTACT THE OWNER'S ENGINEER IF PROPOSED CONSTRUCTION CONFLICTS WITH ANY EXISTING UTILITIES. ALL EXISTING UTILITY INFRASTRUCTURE TO BE PROTECTED AT ALL TIMES THROUGHOUT CONSTRUCTION.

2. REPLACE ALL IMPACTED AREAS TO ORIGINAL CONDITIONS INCLUDING BUT NOT LIMITED TO RETAINING WALL, LANDSCAPING, PAVEMENT, CONCRETE, BACKFILL, ETC.

3. ALL EQUIPMENT, BREAKERS, DISCONNECTS, AND CHARGERS TO BE CLEARLY MARKED USING PHENOLIC LABEL STATING TACOMA POWER AS THE OWNING PARTY WHERE MENTIONED.

4. MUNICIPAL POWER USING PHENOLIC LABEL STATING TACOMA POWER AS THE OWNING PARTY WHERE MENTIONED.

5. PANELBOARDS SHALL BE HEAVY DUTY, COPPER BUS, CONTINUOUS DUTY WITH SHORT CIRCUIT CURRENT RATING (SCCR) PER TACOMA POWER STANDARDS.

6. DO NOT MOUNT CHARGERS ON PRESTRESSED CONCRETE STRUCTURE. ATTACH TO NON-TENSIONED Poured Concrete only.

7. ALL INSTALLATIONS TO MEET THE NEC, NFPA, AND CITY OF TACOMA STANDARDS.

8. PVC IS SCHEDULE 40 UNLESS NOTED OTHERWISE.

9. DIMENSIONS ARE PROVIDED IN DETAILS TO ESTABLISH APPROXIMATE TOTAL AREA WHERE EQUIPMENT CAN BE INSTALLED. ACTUAL/FINAL DIMENSIONS TO BE COORDINATED IN THE FIELD.

10. DO NOT MOUNT CHARGERS ON EXISTING CONCRETE STRUCTURE. ATTACH TO NON-TENSIONED Poured Concrete only.

11. THE FURNISHING OF THE FOLLOWING EQUIPMENT IS NOT IN CONTRACT (NC): ELECTRIC VEHICLE CHARGERS, CHARGER MOUNTING PEDESTALS WHERE SHOWN, CABLE MANAGEMENT SYSTEMS, BREAKAWAY BASEPLATES, AND NON-PAE MOUNTED SERVICE CABINETS. THESE EQUIPMENT ARE TO BE INSTALLED BY CONTRACTOR.

12. CONDUIT LAYOUT AND EQUIPMENT LOCATIONS ARE DIAGRAMMATIC, FINAL PLACEMENT IS TO BE COORDINATED IN THE FIELD WITH OTHER TRADES AND PROJECTS.

ASSOCIATION WITH THE STATE OF WASHINGTON.

0.5 IN. CIRCUIT BREAKERS SHALL COMPLY WITH NEC 2023 STANDARDS SPECIFICATION 0.5 IN. ENCLOSURE CONSTRUCTION SHALL BE SURFACE MOUNT MOUNTED TO THE CURB AND GUTTER.

CONSTRUCTION NOTEGROUND WELL

NATIONAL ELECTRICAL CODE
2022 TACOMA MUNICIPAL CODE
2021 INTERNATIONAL BUILDING CODE
2021 INTERNATIONAL EXISTING BUILDING CODE

THE SINGLE PHASE 480 VOLT, 120/240 VOLT, AND 208 VOLT SERVICE CABINETS SHOWN WHERE MENTIONED, ARE TO BE INSTALLED BY CONTRACTOR.

CONDUIT TRENCHING TO AVOID DAMAGE TO ANY UNDERGROUND UTILITIES. CONTACT THE OWNER'S ENGINEER IF PROPOSED CONSTRUCTION CONFLICTS WITH ANY EXISTING UTILITIES. ALL EXISTING UTILITY INFRASTRUCTURE TO BE PROTECTED AT ALL TIMES THROUGHOUT CONSTRUCTION.

DISTRIBUTION EQUIPMENT AND ASSOCIATED INFRASTRUCTURE TO ENERGIZE EV CHARGERS AT SEVEN (7) LOCATIONS IN DOWNTOWN TACOMA.

1. THE PLANS DO NOT SHOW ALL UNDERGROUND UTILITIES. THE CONTRACTOR SHALL INVESTIGATE UTILITIES PRIOR TO ANY FOUNDATION EXCAVATION AND CONSTRUCTION TO AVOID DAMAGE TO ANY UNDERGROUND UTILITIES. CONTACT THE OWNER'S ENGINEER IF PROPOSED CONSTRUCTION CONFLICTS WITH ANY EXISTING UTILITIES. ALL EXISTING UTILITY INFRASTRUCTURE TO BE PROTECTED AT ALL TIMES THROUGHOUT CONSTRUCTION.

2. REPLACE ALL IMPACTED AREAS TO ORIGINAL CONDITIONS INCLUDING BUT NOT LIMITED TO RETAINING WALL, LANDSCAPING, PAVEMENT, CONCRETE, BACKFILL, ETC.

3. ALL EQUIPMENT, BREAKERS, DISCONNECTS, AND CHARGERS TO BE CLEARLY MARKED USING PHENOLIC LABEL STATING TACOMA POWER AS THE OWNING PARTY WHERE MENTIONED.

4. MUNICIPAL POWER USING PHENOLIC LABEL STATING TACOMA POWER AS THE OWNING PARTY WHERE MENTIONED.

5. PANELBOARDS SHALL BE HEAVY DUTY, COPPER BUS, CONTINUOUS DUTY WITH SHORT CIRCUIT CURRENT RATING (SCCR) PER TACOMA POWER STANDARDS.

6. DO NOT MOUNT CHARGERS ON PRESTRESSED CONCRETE STRUCTURE. ATTACH TO NON-TENSIONED Poured Concrete only.

7. ALL INSTALLATIONS TO MEET THE NEC, NFPA, AND CITY OF TACOMA STANDARDS.

8. PVC IS SCHEDULE 40 UNLESS NOTED OTHERWISE.

9. DIMENSIONS ARE PROVIDED IN DETAILS TO ESTABLISH APPROXIMATE TOTAL AREA WHERE EQUIPMENT CAN BE INSTALLED. ACTUAL/FINAL DIMENSIONS TO BE COORDINATED IN THE FIELD.

10. DO NOT MOUNT CHARGERS ON EXISTING CONCRETE STRUCTURE. ATTACH TO NON-TENSIONED Poured Concrete only.

11. THE FURNISHING OF THE FOLLOWING EQUIPMENT IS NOT IN CONTRACT (NC): ELECTRIC VEHICLE CHARGERS, CHARGER MOUNTING PEDESTALS WHERE SHOWN, CABLE MANAGEMENT SYSTEMS, BREAKAWAY BASEPLATES, AND NON-PAE MOUNTED SERVICE CABINETS. THESE EQUIPMENT ARE TO BE INSTALLED BY CONTRACTOR.

12. CONDUIT LAYOUT AND EQUIPMENT LOCATIONS ARE DIAGRAMMATIC, FINAL PLACEMENT IS TO BE COORDINATED IN THE FIELD WITH OTHER TRADES AND PROJECTS.
CONSTRUCTION NOTES

1. INSTALL CONCRETE FOUNDATION AND OWNER FURNISHED SMART DC EV CHARGER PER MANUFACTURER SPECIFICATION AND DETAIL ON DRAWING EL8.
2. EXCAVATE NORTH SIDE OF VAULT, CORE HOLE THROUGH VAULT AND THROUGH RETAINING WALL PER TACOMA POWER CUSTOMER DRAWING. RUN GRIS CONDUITS EXPOSED DOWN FACE OF RETAINING WALL THEN UNDERGROUND ACROSS PARKING LOT TO NEW XFMR VAULT IN PARKING LOT PER TACOMA POWER STANDARD C-UG-1100.
3. FURNISH AND INSTALL EXISTING XFMR VAULT PER TACOMA POWER STANDARD A-UG-1150, A-UG-1200, AND C-UG-1700. SEE DETAIL A FOR EQUIPMENT LAYOUT.
4. INSTALL STUBOUT TOWARD BACK OF SIDEWALK.
5. FURNISH AND INSTALL PROTECTIVE BOLLARDS TO PROTECT XFMR, EV CHARGERS AND SERVICE CABINET PER TACOMA POWER STANDARD C-UG-1400. COORDINATE FINAL LOCATION WITH TPU INSPECTOR.
6. INSTALL OWNER FURNISHED SERVICE-RATED 400A, 480Y/277V, 3-PHASE, 4-WIRE SPACE PANEL, 200,000 AIC, INSTALLED IN PAD-MOUNTED TAMPER PROOF LOCKABLE ENCLOSURE. SEE DETAIL ON SHEET EL2.
7. EXCAVATE NORTH SIDE OF VAULT, CORE HOLE THROUGH VAULT AND THROUGH RETAINING WALL PER TACOMA POWER CUSTOMER DRAWING. RUN GRIS CONDUITS EXPOSED DOWN FACE OF RETAINING WALL THEN UNDERGROUND ACROSS PARKING LOT TO NEW XFMR VAULT IN PARKING LOT PER TACOMA POWER STANDARD C-UG-1100.
8. INSTALL STUBOUT TOWARD BACK OF SIDEWALK.
9. FURNISH AND INSTALL PROTECTIVE BOLLARDS TO PROTECT XFMR, EV CHARGERS AND SERVICE CABINET PER TACOMA POWER STANDARD C-UG-1400. COORDINATE FINAL LOCATION WITH TPU INSPECTOR.
10. INSTALL OWNER FURNISHED SERVICE-RATED 400A, 480Y/277V, 3-PHASE, 4-WIRE, 24 SPACE SERVICE CABINET WITH 400A MAIN BREAKER, TACOMA POWER METER BASE, AND CURRENT TRANSFORMER. SEE DETAIL ON DRAWING EL12 AND THIS DRAWING FOR BREAKER SCHEDULE. REFERENCE TACOMA POWER STANDARD C-MR-0005 AND CAM-020 FOR METERING.
11. INSTALL CONCRETE FOUNDATION AND GROUNDING UNDER SERVICE CABINET PER DETAIL ON DRAWING EL11 AND NEC.
12. PATCH RETAINING WALL CORES. RESTORE AREA LANDSCAPING, PAVEMENT, CONCRETE, BACKFILL, CURBING AND GUTTER TO ORIGINAL CONDITION.
13. INSTALL CONCRETE BASE AND GROUNDING UNDER SERVICE CABINET PER DETAIL ON DRAWING EL11 AND NEC.
14. REPLACE TAMPER-PROOF LOCKABLE ENCLOSURE. SEE DETAIL ON SHEET EL12.
15. INSTALL OWNER FURNISHED PARTIAL 5X5X4 XFMR VAULT PER TACOMA POWER CUSTOMER DRAWING. RUN GRIS CONDUITS EXPOSED DOWN FACE OF RETAINING WALL THEN UNDERGROUND ACROSS PARKING LOT TO NEW XFMR VAULT IN PARKING LOT PER TACOMA POWER STANDARD C-UG-1100.
16. INSTALL STUBOUT TOWARD BACK OF SIDEWALK.
17. FURNISH AND INSTALL PROTECTIVE BOLLARDS TO PROTECT XFMR, EV CHARGERS AND SERVICE CABINET PER TACOMA POWER STANDARD C-UG-1400. COORDINATE FINAL LOCATION WITH TPU INSPECTOR.
18. INSTALL OWNER FURNISHED SERVICE-RATED 400A, 480Y/277V, 3-PHASE, 4-WIRE SPACE PANEL, 200,000 AIC, INSTALLED IN PAD-MOUNTED TAMPER PROOF LOCKABLE ENCLOSURE. SEE DETAIL ON SHEET EL2.
19. EXCAVATE NORTH SIDE OF VAULT, CORE HOLE THROUGH VAULT AND THROUGH RETAINING WALL PER TACOMA POWER CUSTOMER DRAWING. RUN GRIS CONDUITS EXPOSED DOWN FACE OF RETAINING WALL THEN UNDERGROUND ACROSS PARKING LOT TO NEW XFMR VAULT IN PARKING LOT PER TACOMA POWER STANDARD C-UG-1100.
20. INSTALL STUBOUT TOWARD BACK OF SIDEWALK.
21. FURNISH AND INSTALL PROTECTIVE BOLLARDS TO PROTECT XFMR, EV CHARGERS AND SERVICE CABINET PER TACOMA POWER STANDARD C-UG-1400. COORDINATE FINAL LOCATION WITH TPU INSPECTOR.
22. INSTALL OWNER FURNISHED SERVICE-RATED 400A, 480Y/277V, 3-PHASE, 4-WIRE, 24 SPACE SERVICE CABINET WITH 400A MAIN BREAKER, TACOMA POWER METER BASE, AND CURRENT TRANSFORMER. SEE DETAIL ON DRAWING EL12 AND THIS DRAWING FOR BREAKER SCHEDULE. REFERENCE TACOMA POWER STANDARD C-MR-0005 AND CAM-020 FOR METERING.
23. INSTALL CONCRETE FOUNDATION AND GROUNDING UNDER SERVICE CABINET PER DETAIL ON DRAWING EL11 AND NEC.
24. PATCH RETAINING WALL CORES. RESTORE AREA LANDSCAPING, PAVEMENT, CONCRETE, BACKFILL, CURBING AND GUTTER TO ORIGINAL CONDITION.
25. INSTALL CONCRETE BASE AND GROUNDING UNDER SERVICE CABINET PER DETAIL ON DRAWING EL11 AND NEC.
CONSTRUCTION NOTES

(1) Re-purpose existing 200A 3P Switch and replace fuses with new 200A fuses.
(2) Remove (2) existing Contactor cabinets, time clock and associated unused equipment.
(3) Furnish and install a new Panel rated 200A, 3PH, 208Y/120V.
(4) Remove existing conductors between existing switchboard and existing contactor enclosures. Modify existing gutter as required to run feeders to the new 200 AMP panelboard.
(5) Install (2) two owner furnished wall-mounted level-2 chargers and cable management systems per detail on drawing EL8 at parking stalls (52 and 54) adjacent to the existing level-2 EV chargers.
(6) Surface mount GRP conduit on wall and under concrete beams as shown in plan.
(7) Core drill through wall by the entrance door for conduit installation.
(8) Furnish and install 12X12X4 NEMA 4 junction box for communication gateway. Locate within 160' of charging units where cell signal is strongest. See detail on drawing EL8.
(9) Furnish and install EV charging signs per detail on drawing EL10.
(10) EV charging pavement markings per detail on drawing EL10 will be performed by others.
(11) Furnish and install 16X16X4 NEMA 4 junction box.
(12) Furnish and install disconnect for each charger per NEC.

WIRE NOTES:
(1) 3/4"C, 2#12, #12G
(2) 2"C, 3-#4/0, #4G
(3) 1.25"C, 4#8, #8G CU; (1) 2" spare conduit
(4) 1.25"C, 4#8, #8G CU

EXISTING 200A MCB 208Y/120V 3PH, 4W 24SP
GATEWAY
200A MCB 208Y/120V 3PH, 4W 24SP
GATEWAY
UTILITY METER

ONE LINE DIAGRAM
NOT TO SCALE

BLOCK DIAGRAM
NOT TO SCALE
CONSTRUCTION NOTES

- Feed new EV chargers from existing panel 5a located on the fifth floor.
- Install (6) six owner furnished wall-mounted level 2 chargers per detail on drawing EL8. Use power sharing. Wire configuration per manufacturer's installation manual.
- Furnish and install conduit from panel 5a to new EV chargers through the wall opening closest to panel 5a.
- EV charging pavement markings per detail on drawing EL10 will be performed by others.
- Furnish and install 12x12x4 NM (NEMA 4) junction box for communication gateway. Locate within 10y of charging units where cell signal is strongest. See detail on drawing EL8.
- Furnish and install disconnect per NEC.

WIRE NOTES

- 1"C, 4#4, #8G CU
- 3/4"C, 2#12, #12G
- 80A/2P
- 40A/2P
- 20A/1P
- 15A/1P
Construction Notes

1. Install concrete foundation and owner furnished smart DC EV charger per manufacturer's specifications and detail on drawing EL8.

2. Excavate through sidewalk to expose west side of Tacoma Power vault. Core hole for 3" conduit through side of vault and seal and grout hole around PVC bell end. Coordinate access to vault with Tacoma Power.

4. Furnish and install B-UG-1150 transformer vault per TACOMA POWER STANDARD. See detail for equipment layout.

5. Furnish and install 400A MCB, 480Y/277V, 3 PHASE, 4 WIRE, 24 SPACES panel. Coordinate with field inspector.

6. Furnish and install protective bollards to protect vault, EV chargers and service cabinet per Tacoma Power standard B-UG-1150. Coordinate final location with TPU inspector.

7. Furnish and install service-rated 400A, 480Y/277V, 3 PHASE, 4 WIRE, 24 SPACE service cabinet with 40A main breaker, Tacoma Power meter base, and current transformer. See detail on drawing EL8 and this drawing for breaker schedule. Reference Tacoma Power standard C-UG-1200 and C-UG-1700 for metering.

8. Furnish and install protective concrete base and grounding under service cabinet per detail on drawing EL11 and NEC.

9. Furnish and install protective bollards to protect vault, EV chargers and service cabinet per Tacoma Power standard C-UG-1150. Coordinate final location with TPU inspector.

10. Furnish and install protective bollards to protect vault, EV chargers and service cabinet per Tacoma Power standard C-UG-1150. Coordinate final location with TPU inspector.

11. Furnish and install concrete base and grounding under service cabinet per detail on drawing EL11 and NEC.

12. Furnish and install EV charging signs per detail on drawing EL10 and NEC.

13. Furnish and install nema 3R rated, 3Ph, 80A non-fused disconnect switch per NEC.

14. Open cut roadway per city of Tacoma standards. Use schedule 80 PVC under roadway. Backfill trench using WSDOT approved CDF.

15. Coordinate vegetation removal and remediation with field inspector to accommodate new equipment. Remove all above and below ground portions of Bohemian knotweed patch and dispose of impacted bushes or shrubs with same or similar species and size. Refer to Tacoma Municial Code 13.06.090.B for landscaping standards.

16. Trench within the sidewalk concrete panel. Immediate north or south of existing vault. Avoid curb ramps and curbing radius of sidewalk.

17. Install concrete foundation and owner furnished smart DC EV charger per manufacturer's specifications and detail on drawing EL8.

18. Excavate through sidewalk to expose west side of Tacoma Power vault. Core hole for 3" conduit through side of vault and seal and grout hole around PVC bell end. Coordinate access to vault with Tacoma Power.

20. Furnish and install B-UG-1150 transformer vault per TACOMA POWER STANDARD. See detail for equipment layout.

21. Furnish and install 400A MCB, 480Y/277V, 3 PHASE, 4 WIRE, 24 SPACE panel. Coordinate with field inspector.

22. Furnish and install protective bollards to protect vault, EV chargers and service cabinet per Tacoma Power standard B-UG-1150. Coordinate final location with TPU inspector.

23. Furnish and install service-rated 400A, 480Y/277V, 3 PHASE, 4 WIRE, 24 SPACE service cabinet with 40A main breaker, Tacoma Power meter base, and current transformer. See detail on drawing EL8 and this drawing for breaker schedule. Reference Tacoma Power standard C-UG-1200 and C-UG-1700 for metering.

24. Furnish and install protective concrete base and grounding under service cabinet per detail on drawing EL11 and NEC.

25. Furnish and install protective bollards to protect vault, EV chargers and service cabinet per Tacoma Power standard C-UG-1150. Coordinate final location with TPU inspector.

26. Furnish and install concrete base and grounding under service cabinet per detail on drawing EL11 and NEC.

27. Furnish and install EV charging signs per detail on drawing EL10 and NEC.

28. Furnish and install nema 3R rated, 3Ph, 80A non-fused disconnect switch per NEC.

29. Open cut roadway per city of Tacoma standards. Use schedule 80 PVC under roadway. Backfill trench using WSDOT approved CDF.

30. Coordinate vegetation removal and remediation with field inspector to accommodate new equipment. Remove all above and below ground portions of Bohemian knotweed patch and dispose of impacted bushes or shrubs with same or similar species and size. Refer to Tacoma Municial Code 13.06.090.B for landscaping standards.

31. Trench within the sidewalk concrete panel. Immediate north or south of existing vault. Avoid curb ramps and curbing radius of sidewalk.

Wire Notes

1. (2) 2" PVC, conductors per Tacoma Power

2. (4) 4" PVC, #66/6, 4#4, 4#8G, (2) 4" 80A/3P

3. (4) 1.5" PVC, 4#4, 4#8G DU

4. (2) 2" PVC conduit stub out

General Notes

1. Soils at this location may be contaminated. Excavate, remove and dispose of contaminated soil per RCRA Subtitle C or D. The excavated area shall be replaced with clean backfill.
CONSTRUCTION NOTES

1. Furnish and install a new panel rated 225A, MLO, 208Y/120V. Place in vicinity of existing panel L2G. See one line diagram for breaker schedule.

2. Feed new panel from 225A spare breaker in switchboard LD1A as shown.

3. Install (6) six owner furnished wall-mounted level-2 chargers on the ground floor along garage wall adjacent to dock street in parking stalls 168 to 173 as shown per detail on drawing EA.

4. Furnish and install conduit exposed overhead in garage from main electrical room to EV chargers.

5. Furnish and install EV charging signs per detail on drawing EL10.

6. EV charging pavement markings per detail on drawing EL10 will be performed by others.

7. Furnish and install 12x12x4 NM NEMA 4 junction box for communication gateway. Locate within 160' of all charging units where cell signal is strongest. See detail on drawing EL8.

8. Furnish and install disconnect for each charger per NEC.

WIRE NOTES

- 2°C, 4-#4/0, #2G CU
- 1.25°C, #4, #8G CU
- 3/4"C, #6, #12G

ONE-LINE DIAGRAM

NOT TO SCALE
CONSTRUCTION NOTES

- INSTALL (6) OWNER FURNISHED PEDESTAL-MOUNTED LEVEL-2 CHARGERS AS SHOWN PER DETAIL ON DRAWING EL13.
- FURNISH AND INSTALL CONDUIT EXPOSED OVERHEAD IN GARAGE FROM PANEL 22M2 TO EV CHARGERS.
- FURNISH AND INSTALL EV CHARGING SIGNS PER DETAIL ON DRAWING EL10.
- EV CHARGING PAVEMENT MARKINGS PER DETAIL ON DRAWING EL10 WILL BE PERFORMED BY OTHERS.
- FURNISH AND INSTALL 12X12X4 NM NEMA 4 JUNCTION BOX FOR COMMUNICATION GATEWAY. LOCATE WITHIN 100' OF ALL CHARGING UNITS WHERE CELL SIGNAL IS STRONGEST. SEE DETAIL ON DRAWING EL8.
- DISCONNECT MEANS FOR EACH CHARGER IS TO BE FURNISHED BY THE OWNER, INSTALLED IN PEDESTAL. SEE DETAIL ON DRAWING EL13.

WIRE NOTES

- 1.25"C, #6, #6G CU
- 3/4"C, #8, #8G

EXISTING PANEL 22M2
225 MLO 208Y/120V 3 PHASE, 4 WIRE
COMMUNICATION GATEWAY ENCLOSURE
NOT TO SCALE

PARK PLAZA GARAGE POWER SHARING DIAGRAM
NOT TO SCALE

WALL MOUNT SCHEMATIC
NOT TO SCALE
CONSTRUCTION NOTES

1. INSTALL CHARGER, POWER CONNECTIONS AND GROUND IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND INSTALLATION GUIDE.

2. CONSTRUCT CONCRETE FOUNDATION PER WSDOT STANDARD J-10.10-04 AND AS SHOWN.

3. DISCONNECT TO BE LOCKABLE IN BOTH THE OPEN AND CLOSED POSITION.

4. SEE ONE-LINE AND ELEVATIONS DRAWINGS FOR CONDUIT AND CABLE INFORMATION.

5. CABLE MANAGEMENT SYSTEM ATTACHED TO SIDE OF CHARGER.

PLACE REBAR IN CENTER OF SLAB

CONDUIT AND CABLE TO SERVICE

COORDINATE DISCONNECT LOCATION WITH TPU INSPECTOR

POWER CONDUIT AND CABLE FROM DISCONNECT

ANCHOR CABINET TO PAD PER MANUFACTURER INSTALLATION GUIDE

FINISHED GRADE

FINISHED GRADE

#3 REBAR 12" ON CENTER TYP.

CONSTRUCTION BY FIELD BOOKS

DATE CHECKED FINAL

DATE DESIGNED

SMART DC CHARGER AND DISCONNECT DETAILS

DOWNTOWN TACOMA EYSE

SMART DC CHARGER AND DISCONNECT DETAILS

TACOMA PUBLIC UTILITIES

1/18/23 NTS

L.5

E.9
NOTES

THE FOLLOWING INSTRUCTIONS ARE FOR REFERENCE ONLY. PAVEMENT MARKING WILL BE
PERFORMED BY OTHERS.

PROVIDE 4.5" SPACING BETWEEN STENCILS.

LOCATION: CENTER AT FOOT OF PARKING STALL

FONT: STANDARD GOTHIC

COLOR: GREEN ON EXISTING SURFACE (NO FILL INSIDE STENCIL)

EVSE PAVEMENT MARKING AND SIGNAGE DETAILS

NOTES

FURNISH AND INSTALL SIGNING. COORDINATE WITH FIELD INSPECTOR AND TACOMA POWER
SIGNING DEPARTMENT.

SIGNS (1) AND (2) ARE TO BE PLACED TO IDENTIFY EV CHARGING PARKING SPACE.

SIGN (3) IS TO BE PLACED TO SHOW THE DIRECTION OF CHARGING STATION(S).

FURNISH AND INSTALL SIGNING ADJACENT TO EACH PARKING STALL SERVED BY AN EV CHARGER.
MOUNT ON APPROPRIATE WALL OR INSTALL ON 4X4 TREATED WOOD POST WHERE WALL MOUNTING
IS NOT SUITABLE. COORDINATE EXACT LOCATIONS WITH CITY OF TACOMA SITE REPRESENTATIVE.

EVSE PAVEMENT MARKING

EVSE PARKING SIGNAGE

EVSE PAVEMENT MARKING AND SIGNAGE DETAILS
CONSTRUCTION NOTES:
1. Furnish and install 5/8" x 10' copper clad ground rod in all 4 corners of the foundation.
2. Construct concrete service foundation in accordance with WSDOT Standard J-10.10-04.
3. Furnish and install continuous bare copper conductor ground ring 6" inside the edge of the concrete foundation, buried 12" below the bottom of the concrete foundation, in full contact with native soil material and connected to all ground rods using approved NEC compliant connectors.
4. Furnish and install accessible ground well at each ground rod.
5. Extend bare copper ground tail from two ground rods to the service cabinet ground terminal. Protect copper conductor through concrete by installing in conduit.
6. #3 rebar 12" on center. Place rebar mat in the center of concrete pad per WSDOT Standard J-10.10-04.
8. Internal utility power meter.
9. Main breaker.
10. Lockable distribution circuit breakers see one line for information.
11. Utility termination CT section per Tacoma power requirements.
GENERAL NOTES
1. DESIGN SHOWN IS BASED ON SKYLINE MANUFACTURING - SERIES 67850. MANUFACTURER'S NAMES AND MODELS ARE PROVIDED AS A POINT OF REFERENCE FOR A STANDARD, QUALITY AND FUNCTIONALITY AND ARE NOT INTENDED TO IMPLY SOURCING OF THE PRODUCT OR SERVICE PANEL. THE SERVICE PANEL MUST MEET OR EXCEED ALL THE CHARACTERISTICS SHOWN.
2. CIRCUIT BREAKERS SHALL COMPLY WITH WSDOT 2023 STANDARD SECTION 9-29.25.
3. SERVICE CABINET IS FURNISHED BY CITY OF TACOMA.

277/480V PANEL

COMPONENT SCHEDULE
1. 400A, 3Ø, 4W CT LANDING PAD, B-LINE 6067HAL
2. 13 JAW CT RATED METER BASE, B-LINE 121413
3. PANELBOARD: 277/480V, 400A COPPER BUS, 3Ø, 4W, 24CKT, 200KAIC RATED
 MAIN BREAKER: 600A FRAME, 400A TRIP, 3 POLE, EATON PDG33F0400FTAJ
BOLT ON BRANCH BREAKERS (QUANTITY PER PANEL SCHEDULES ON SHEETS EL14 AND EL15):
 100A FRAME, 80A TRIP, EATON BAB2040
 100A FRAME, 20A TRIP, 1 POLE, EATON BAB1020
LOCKOUT ACCESSORY (QUANTITY PER PANEL SCHEDULES ON SHEETS EL14 AND EL15):
 EATON QL123EL

CABINET NOTES
- NEMA TYPE 3R OUTDOOR PADMOUNT
- #12 GA PRE-GALV STEEL CONSTRUCTION
- OPEN BOTTOM FRAMED WITH 2" ANGLE
- TOP AND BOTTOM SCREENED AND GASKETED VENTS
- DOORS HEAVY DUTY CONCEALED HINGES (SUIT-OFF TYPE), PADLOCKABLE
- STAINLESS STEEL VERTICAL LOCKS THAT PROVIDE 2-POINT COMPRESSION ON CLOSED CELL NEOPRENE GASKET
- CT SECTION: METERBASE AND DEAD-FRONTED CT LANDING PAD
- DEAD-FRONTED DISTRIBUTION SECTION
- FINISH: ASA61 GREY FIBERGLASS POWERED COAT FINISH OVER ZINC PRIMER.
- EQUIPMENT MOUNTING PAN WHITE.
- UL 508A ENCLOSED INDUSTRIAL CONTROL PANEL

120/208V PANEL

COMPONENT SCHEDULE
1. 400A, 3Ø, 4W CT LANDING PAD, B-LINE 6067HAL
2. 13 JAW CT RATED METER BASE, B-LINE 121413
3. PANELBOARD: 120/208V, 400A COPPER BUS, 3Ø, 4W, 24CKT, 200KAIC SERIES RATED
 MAIN BREAKER: 600A FRAME, 400A TRIP, 3 POLE, EATON PDG33F0400FTAJ
 BOLT ON BRANCH BREAKERS (QUANTITY PER PANEL SCHEDULES ON SHEETS EL14 AND EL15):
 40A, 2P BRANCH
 40A, 2P BRANCH
 40A, 2P BRANCH
 40A, 2P BRANCH
 40A, 1P BRANCH
 1P SPACE
LOCKOUT ACCESSORY (QUANTITY PER PANEL SCHEDULES ON SHEETS EL14 AND EL15):
 EATON GL123EL

CABINET NOTES
- NEMA TYPE 3R OUTDOOR PADMOUNT
- #12 GA PRE-GALV STEEL CONSTRUCTION
- OPEN BOTTOM FRAMED WITH 2" ANGLE
- TOP AND BOTTOM SCREENED AND GASKETED VENTS
- DOORS HEAVY DUTY CONCEALED HINGES (SUIT-OFF TYPE), PADLOCKABLE
- STAINLESS STEEL VERTICAL LOCKS THAT PROVIDE 3-POINT COMPRESSION ON CLOSED CELL NEOPRENE GASKET
- CT SECTION: METERBASE AND DEAD-FRONTED CT LANDING PAD
- DEAD-FRONTED DISTRIBUTION SECTION
- FINISH: ASA61 GREY FIBERGLASS POWERED COAT FINISH OVER ZINC PRIMER.
- EQUIPMENT MOUNTING PAN WHITE.
- UL 508A ENCLOSED INDUSTRIAL CONTROL PANEL
PEDESTAL INSTALLATION DETAILS

1.5'' GRC

V-SHAPED MOUNTING BRACKET REFER TO MANUFACTURER'S PEDESTAL AND CABLE MANAGEMENT SYSTEM INSTALLATION GUIDE.

1.5'' GRC SUPPORT AS NEEDED AND PER NEC

DUAL CIRCUIT BREAKERS AND DISCONNECT

ISOLATED TERMINAL BLOCK; USE ONLY FOR POWER SHARING APPLICATIONS. OTHERWISE CONNECT CONDUCTORS DIRECTLY TO DUAL CIRCUIT BREAKERS ABOVE.

NON-ISOLATED TERMINAL BLOCK

WIRING INFORMATION STICKER

PUNCH OUT HOLE IN BACK OF PEDESTAL OPPOSITE OF ACCESS DOOR TO CREATE CONDUCTOR PATH.

ATTACH PEDESTAL TO BREAKAWAY BASE USING 3/8'' STAINLESS STEEL HARDWARE

ANCHOR OWNER FURNISHED METAL BREAKAWAY BASE TO CONCRETE SLAB USING 3/4'' DIAMETER 304 STAINLESS STEEL EPOXY ANCHOR AS MANUFACTURED BY HILTI OR APPROVED EQUAL WITH MINIMUM 2-1/2'' EMBEDMENT. AVOID DRILLING INTO REBAR. USE LEVELING NUTS BETWEEN CONCRETE AND BREAKAWAY BASE TO PLUMB AND LEVEL CHARGER PEDESTAL. GROUT VOID UNDER BREAKAWAY BASE USING APPROVED 4000 PSI NON SHRINK GROUT.

NOTE MANUFACTURER-INSTALLATION GUIDE FOR INSTALLATION DETAILS.

SUPPORT AS NEEDED AND PER NEC

CONCRETE

GALVANIZED CONDUIT BODY

FRONT VIEW

SIDE VIEW

PEDESTAL WITH SURFACE MOUNT CONDUIT NOT TO SCALE

CABLE MANAGEMENT SYSTEM INSTALL PER MANUFACTURER INSTALLATION REQUIREMENTS

53.125''

6''

25.5''

NOTE MANUFACTURER-INSTALLATION GUIDE FOR INSTALLATION DETAILS.

4/6/2023

4/6/2023

NOTE MANUFACTURER-INSTALLATION GUIDE FOR INSTALLATION DETAILS.

4/6/2023

4/6/2023

NOTE MANUFACTURER-INSTALLATION GUIDE FOR INSTALLATION DETAILS.
New Panel Schedule

Panel 5A

Location: 1500 Commerce St (Pike Place Market, Fifth Level)

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Load Description</th>
<th>Type</th>
<th>KVA</th>
<th>PHASE</th>
<th>A/P</th>
<th>Type</th>
<th>KVA</th>
<th>PHASE</th>
<th>A/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Existing Car Charging Station #1</td>
<td>D</td>
<td>2000</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>1200</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Existing Car Charging Station #1</td>
<td>D</td>
<td>2000</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>1200</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Existing Car Charging Station #1</td>
<td>D</td>
<td>2000</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>1200</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Existing Car Charging Station #1</td>
<td>D</td>
<td>2000</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>1200</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Existing Car Charging Station #1</td>
<td>D</td>
<td>2000</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>1200</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Total Loads

Type: Panel A = L/240, Panel B = 120/240, Panel C = L/240 KVA

Total Load: 134.00 KVA

Location: 1401 Pacific Avenue (14th St Lot)

Existing Panel Schedule 5A

Location: 110 South 10th St (Tacoma Parking Garage)

Type: Panel A = L/240, Panel B = 120/240, Panel C = L/240 KVA

Total Load: 134.00 KVA

New Panel Schedule

Location: 110 South 10th St (Tacoma Parking Garage)

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Load Description</th>
<th>Type</th>
<th>KVA</th>
<th>PHASE</th>
<th>A/P</th>
<th>Type</th>
<th>KVA</th>
<th>PHASE</th>
<th>A/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Car Charging Station #1</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Car Charging Station #1</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Car Charging Station #1</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Car Charging Station #1</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Car Charging Station #1</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td>D</td>
<td>36.00</td>
<td>R077</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Total Loads

Type: Panel A = L/240, Panel B = 120/240, Panel C = L/240 KVA

Total Load: 134.00 KVA
NEW PANEL SCHEDULE

<table>
<thead>
<tr>
<th>Ckt</th>
<th>Load Description</th>
<th>Type</th>
<th>KVA</th>
<th>A/P</th>
<th>Phase</th>
<th>A/P</th>
<th>KVA</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAR CHARGING STATION 1</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>A</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 1</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>2</td>
<td>CAR CHARGING STATION 1</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>B</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 1</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>3</td>
<td>CAR CHARGING STATION 1</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>C</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 1</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>4</td>
<td>CAR CHARGING STATION 2</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>A</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 2</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>5</td>
<td>CAR CHARGING STATION 2</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>B</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 2</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>6</td>
<td>CAR CHARGING STATION 2</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>C</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 2</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>7</td>
<td>CAR CHARGING STATION 3</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>A</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 3</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>8</td>
<td>CAR CHARGING STATION 3</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>B</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 3</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>9</td>
<td>CAR CHARGING STATION 3</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>C</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 3</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>10</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>A</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>B</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>C</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOAD TYPE</th>
<th>KVA</th>
<th>TOTAL LOAD</th>
<th>KVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND. LOAD</td>
<td>44.20</td>
<td>122.70 KVA</td>
<td></td>
</tr>
<tr>
<td>NET LOAD</td>
<td>44.20</td>
<td>122.70 KVA</td>
<td></td>
</tr>
</tbody>
</table>

EXISTING PANEL SCHEDULE 22M2

<table>
<thead>
<tr>
<th>Ckt</th>
<th>Load Description</th>
<th>Type</th>
<th>KVA</th>
<th>A/P</th>
<th>Phase</th>
<th>A/P</th>
<th>KVA</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAR CHARGING STATION 1</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>A</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 1</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>2</td>
<td>CAR CHARGING STATION 1</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>B</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 1</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>3</td>
<td>CAR CHARGING STATION 1</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>C</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 1</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>4</td>
<td>CAR CHARGING STATION 2</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>A</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 2</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>5</td>
<td>CAR CHARGING STATION 2</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>B</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 2</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>6</td>
<td>CAR CHARGING STATION 2</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>C</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 2</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>7</td>
<td>CAR CHARGING STATION 3</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>A</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 3</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>8</td>
<td>CAR CHARGING STATION 3</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>B</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 3</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>9</td>
<td>CAR CHARGING STATION 3</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>C</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 3</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>10</td>
<td>CAR CHARGING STATION 4</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>A</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 4</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>11</td>
<td>CAR CHARGING STATION 4</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>B</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 4</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>12</td>
<td>CAR CHARGING STATION 4</td>
<td>D</td>
<td>2200</td>
<td>W2</td>
<td>C</td>
<td>2200</td>
<td>D</td>
<td>CAR CHARGING STATION 4</td>
<td>SERVING: EV CHARGERS</td>
</tr>
<tr>
<td>13</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>A</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>B</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>C</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>COMMUNICATION GATEWAY</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>D</td>
<td>1000</td>
<td>20/2</td>
<td>COMMUNICATION GATEWAY</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOAD TYPE</th>
<th>KVA</th>
<th>TOTAL LOAD</th>
<th>KVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND. LOAD</td>
<td>44.20</td>
<td>122.70 KVA</td>
<td></td>
</tr>
<tr>
<td>NET LOAD</td>
<td>44.20</td>
<td>122.70 KVA</td>
<td></td>
</tr>
</tbody>
</table>

New Panel enclosed in service cabinet, furnished by City of Tacoma.